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ABSTRACT

Stem and non-stem cell behavior is heavily influenced by the surrounding microenvironment,
which includes other cells, matrix, and potentially biomaterials. Researchers have been successful
in developing scaffolds and encapsulation techniques to provide stem cells with mechanical, topo-
graphical, and chemical cues to selectively direct them toward a desired differentiation pathway.
However, most of these systems fail to present truly physiological replications of the in vivo micro-
environments that stem cells are typically exposed to in tissues. Thus, cell mimicking microparticles
(CMMPs) have been developed to more accurately recapitulate the properties of surrounding cells
while still offering ways to tailor what stimuli are presented. This nascent field holds the promise
of reducing, or even eliminating, the need for live cells in select, regenerative medicine therapies,
and diagnostic applications. Recent, CMMP-based studies show great promise for the technology,
yet only reproduce a small subset of cellular characteristics from among those possible: size, mor-
phology, topography, mechanical properties, surface molecules, and tailored chemical release to
name the most prominent. This Review summarizes the strengths, weaknesses, and ideal applica-
tions of micro/nanoparticle fabrication and customization methods relevant to cell mimicking and
provides an outlook on the future of this technology. Moving forward, researchers should seek to
combine multiple techniques to yield CMMPs that replicate as many cellular characteristics as pos-
sible, with an emphasis on those that most strongly influence the desired therapeutic effects. The
level of flexibility in customizing CMMP properties allows them to substitute for cells in a variety
of regenerative medicine, drug delivery, and diagnostic systems. STEM CELLS TRANSLATIONAL
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SIGNIFICANCE STATEMENT

The article discusses the various fabrication and customization methodologies capable of produc-
ing cell mimicking microparticles (CMMPs), as well as which of these techniques is optimal for par-
ticular applications or compatible with specific materials. The Concise Review describes current
and potential applications in tissue engineering/regenerative medicine, drug delivery, diagnostic
tools, and more. Also included are expected timelines as to when such applications are likely to be
adopted and suggestions on where future development of this technology should be focused for
producing more accurate cell mimics. The readers should be able to easily identify the pros and
cons of the various fabrication procedures as they relate to different applications, as well as how
the customization methods can enhance CMMP-based experiments or therapies.

INTRODUCTION

Microparticles have long been used in research
and clinical applications. Recently, research has
focused on creating microparticles that resemble
aspects of living cells, termed cell mimicking
microparticles (CMMPs), to improve their per-
formance in regenerative medicine, drug delivery,
and basic research systems. CMMPs have been

fabricated to mimic the mechanical, topographi-
cal, and morphological characteristics of cells, and
can be further modified to recapitulate the sur-
face coatings of cells or their release of biological
compounds. These types of particles can serve as
scaffolds and stimulants for use in three-
dimensional (3D) culture systems, enabling
increased control and directivity over stem cell
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differentiation in more physiologically relevant morphologies.
While two-dimensional (2D) mimicking strategies have had suc-
cess [1, 2], tissue constructs organized as a 3D structure allow for
more cell-cell contacts compared with monolayer culture, provid-
ing special advantages when using compliant materials that are
known to influence stem cell differentiation [3–7]. Although sev-
eral studies have used microparticles to investigate stem cell dif-
ferentiation in 3D [8–13], their performance and integration with
cultured constructs could be further improved by mimicking
aspects of living cells. CMMPs are designed to simulate cell char-
acteristics such as surface proteins, mechanical properties, mor-
phology, size, and/or secreted factors, eliciting tissue regeneration
responses similar to live-cell therapies [8, 13–17]. CMMPs with
these characteristics have the potential to incorporate into 3D
microtissue constructs, influence multi-cellular organization, and
alter gene and protein expression to achieve moderate control of
cell behavior and lineage-specific differentiation responses. Appli-
cations of CMMPs extend well beyond regenerative medicine and
include drug delivery and diagnostic systems as well. Some modifi-
cations such as surface coating and mechanical property tuning
can improve tissue-specific targeting and penetration of micro-to-
nano-sized particles into tissues or cells for enhanced drug deliv-
ery or screening. More generally, CMMPs lend themselves to use
as calibration and test particles in devices that manipulate, charac-
terize, retain, or pass-through cells, as they more accurately repli-
cate cellular adhesive and deformation behavior compared with
unmodified, rigid particles.

While the subject of microparticles has been extensively
reviewed elsewhere with regard to drug delivery and tissue engi-
neering applications [18–20], this Concise Review will focus on the
design, fabrication, and use of particles that mimic the properties
of living cells, with special attention to their stem cell-related
applications. To begin, a brief summary of CMMP history is pro-
vided, highlighting their more general applications in the field of
regenerative medicine. Additional details include the applicable
fabrication and customization techniques used prominently by
researchers, as well as how these modifications lend themselves
to regenerative medicine, drug delivery, and diagnostic applica-
tions in the context of cell mimicking strategies.

CURRENT AND POTENTIAL APPLICATIONS OF CMMPS

CMMPs can serve as tools for regenerative medicine/tissue engi-
neering therapies, enhancing drug delivery, monitoring intratissue
stresses and strains, and elucidating the behavior of cells in flow-
based devices. These effects and capabilities are driven by the cell
mimicking nature of the particles—in some cases this means pre-
senting bioactive molecules to the local environment and in
others adopting deformability characteristics similar to living cells.
As a nascent offshoot of the more established field of biomimicry,
the extent to which CMMPs can be applied is yet to be
determined.

Regenerative Medicine

CMMPs have been proposed for diverse applications in regenera-
tive medicine, including use as a means of alleviating hypoxia and
improving homogeneity by improving the diffusion of gases and
soluble growth factors, respectively, as a local microenvironment
sensor, and as a unique scaffold to provide structural support with
tethered bioactive molecules, soluble factors, and/or specific

mechanical cues to neighboring cells to encourage processes like
vascularization and stem cell differentiation [21, 22]. Studies
focused on mimicking the surface characteristics of specific cell
types to elicit regenerative responses have coated poly(lactic-co-
glycolic acid) (PLGA) nanoparticles with cell membranes extracted
from red blood cells [23, 24], platelets [25], bone marrow stem
cells and smooth muscle cells [26], leukocytes [27], and even can-
cer cells [28] (Fig. 1). Building from this work, a recent article by
Tang et al. described their success mimicking the surface proteins
and secretome of cardiac stem cells by attaching portions of their
plasma membranes to PLGA microparticles, as well as incorporat-
ing cell secreted proteins into the polymer network during the
fabrication process [17]. This work revealed that CMMPs replicat-
ing just these two aspects of cardiac stem cells can yield tissue
regeneration responses similar to living cardiac stem cells used to
repair damage due to myocardial infarction.

Microparticles in general have been used to address key
issues of 3D tissue constructs, such as limited diffusion caused by
the lack of vasculature and formation of gap junctions at cell-cell
contacts—an issue that can complicate the delivery of oxygen,
nutrients, and chemical induction factors through the extracellular
space of these constructs [8, 13]. Integrating cell-sized and larger
particles, while not truly cell mimicking, can prevent gap junction
formation and allow waste and nutrients to diffuse more easily
through the entire construct. Another issue with 3D constructs is
the observed radial heterogeneity in stem cell differentiation
response, where osteogenesis occurs more readily in the center
and outskirts of stem cell spheroids while most adipogenic differ-
entiation has been reported just under the surface [3]. Incorporat-
ing microparticles into stem cell spheroids can result in more
homogeneous differentiation responses throughout microtissue
constructs [8]. Microparticles have also been doped with growth
factors or drugs to controllably deliver these factors to stem cells
that would otherwise be more isolated deep within the microtis-
sues [10, 29]. Loading microparticles with this kind of cargo
yielded improved differentiation responses and regenerative
capacities compared with blank microparticles by providing more
direct delivery of soluble factors [30–32]. Although drug-doped
microparticles have demonstrated great promise, there remains
the possibility of microparticles being sensed as foreign, in which
case it may be advantageous to mimic the characteristics of neigh-
boring cells to limit fibrous encapsulation and maintain the free
release of loaded cargo.

Generally, researchers have been able to direct cell behavior
by controlling external stimuli that dictate cellular adhesion,
migration, proliferation, morphology, gene expression, and differ-
entiation in 3D, biomimicking environments to produce tissue
constructs for implantation or promote the regeneration of exist-
ing tissues [5, 6, 17, 33–39]. The recent development of CMMPs
provides a new approach to delivering cues capable of directing
stem cell fate while also addressing some of the limitations of
current tissue engineering practices. CMMPs can be designed
to match the size, morphology, surface coating/roughness,
mechanical properties, and protein release profiles of living cells
[16, 40–42]. These characteristics allow for passive and active
incorporation into tissues and engineered constructs and can
directly influence the behavior and biology of local environments.
From a practical perspective, CMMPs are also compatible with flu-
orescent stains, making them an incredibly versatile tool for tissue
engineering applications and general research [16]. CMMPs can
be loaded with drugs or therapeutics and tuned to have specific
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Figure 1. Membrane cloaking/ghosting/camouflage of polymer particles. NPs have been coated with (A) RBCs membranes to extend circulation
time in the body (adapted from [23]) and (B) cancer cell membranes to both increase antigen delivery to dendritic cells and target source cancer
cells (adapted from [28]). (C): SEM image of unmodified nanoparticle, leukocyte, and nanoparticle camouflaged with leukocyte membrane
(adapted from [27]). This coating can be used to extend circulation time by avoiding uptake by the phagocyte system. Scale bar5 1 mm. (D): MPs
(red) can also be cloaked with membrane fragments (adapted from [17]). Green fluorescent DiO-labeled CSCs are used to form the layered
CMMP (red particle with green coat). Scale bar, 20 lm. SEM of control MP and cloaked CMMP showing the presence of CSC membrane frag-
ments. Scale bar, 10 lm. Adapted and reproduced with permission. Abbreviations: CMMPs, cell mimicking microparticles; CSCs, cardiac stem cells;
MPs, microparticles; NPs, nanoparticles; RBCs, red blood cells.
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release profiles for administering treatments to damaged or dis-
eased tissues via diffusion, post integration [15, 43, 44]. Compared
with bulk biomaterials that encapsulate cells or rely on their infil-
tration into pores, neotissues composed only of cells and CMMPs
allow for more natural formation of cell-cell and cell-CMMP con-
tacts, making cell arrangement and interaction more dynamic
than traditional scaffolds [16]. Recent innovations have allowed
for the creation of CMMPs that can mimic the size and mechanical
properties of stem cells for incorporation into self-assembled cell
spheroids [16], as well as the size, shape, and stiffness of red
blood cells to investigate how these properties influence move-
ment through capillary-like channels [40, 43, 45]. Although early
CMMPs have shown great promise for improving tissue-based
therapies, their efficacy can potentially be enhanced by combining
surface coatings, mechanics, drug loading, and morphological con-
trol of the particles.

Drug Delivery

Micro- and nano-sized particles have long been the primary
approach for drug and gene delivery purposes [46], although only
recently have properties such as complex surface coatings and
mechanical properties been taken into consideration for improv-
ing aspects such as tissue-specific accumulation and circulation
time. By loading microparticles with biological compounds, these
systems can mimic the release profiles of cells and organs,
although they lack the feedback mechanisms that living cells pos-
sess [15, 44]. The characteristics of the particles are integral to
how an organism interacts with them. Particle size and morphol-
ogy also play important roles in their tissue distribution [47]. For
example, the number of spherical particles in a given tissue/organ
will decrease monotonically as size increases; however, a dispro-
portionate fraction of particles will always accumulate in the retic-
uloendothelial system organs [48, 49]. Discoidal particles have
been observed to accumulate in most tissues to a greater extent
than spherically, quasi-hemispherically, or cylindrically shaped par-
ticles. Also in regard to intracellular delivery, rod shaped particles
have been reported to undergo increased phagocytosis when
compared with spherical microparticles [50]. These alternative
shapes are particularly relevant to CMMPs that replicate unique
cell types like discoidal red blood cells. Particle size is also inte-
grally related to the loading and encapsulation efficiency of drugs,
with larger particles correlating with greater efficiency. As with
any other particle-based drug delivery approach, chemically
loaded CMMPs would typically exhibit a burst release of their
cargo [51], although material and processing modifications can
ameliorate this effect to achieve more controlled/sustained
release [52]. The strategies currently used to accumulate drug
delivering microparticles in a specific organ or area can also be
applied to CMMPs [53]. These types of drug delivery systems are
often intended for use in cancer treatment and target the dis-
eased tissues through an enhanced permeability and retention
effect, mainly through size-based mechanisms [54, 55]. The inte-
gration of various ligands on the surface of microparticles is
another means of accomplishing targeted delivery and has been
demonstrated with avb3/avb5 integrin-binding RGD peptides
[56], as well as alendronate and aspartic acid peptides [57].
Another key component to consider for CMMP-based, drug deliv-
ery applications is circulation time. Researchers have been able to
increase the circulation time of both polymeric and liposomal
microparticles by adding polyethylene glycol (PEG) to the surface
or altering the mechanical properties and size of the particles. The

former approach is so widely used that it even has its own term:
PEGylation [58]. The enhanced retention/circulation time is attrib-
uted to the fact that PEGylation reduces renal clearance [59],
which in turn may affect cellular uptake and intracellular traffick-
ing [60]. As this field continues to develop and innovate, research-
ers striving to increase circulation time by mimicking other
circulatory cells will need to incorporate important features such
as highly compliant mechanical properties and coatings that dis-
guise particles as native cell types.

Diagnostic Tools

Potential applications of CMMPs extend well beyond regenerative
medicine and drug delivery to use as calibration or test particles
for flow cytometry and microfluidic devices, force measurement
probes, and tools for toxicology screening, among other possibil-
ities. Any system that involves cells could substitute CMMPs for
preliminary testing purposes. Particle sizers, automated cell coun-
ters, flow cytometry, and fluorescence activated cell sorting
(FACS) are common techniques used to analyze or sort cell popu-
lations through the detection of fluorescence or light scattering to
determine either the presence of specific proteins/genes or the
size and complexity of the cell/particle passing through an inter-
rogation point [61]. These devices are a regular tool for the assess-
ment of stem and other cell types. However, the polystyrene and
latex particles used to calibrate these systems exhibit mechanical
moduli 5–6 orders of magnitude higher than those of living cells,
resulting in substantially different deformation behavior when
flowing at high speeds in small channels [62, 63]. Mechanically
matched CMMPs should behave more similarly to cells in regard
to their locations in streamlines, deformation/elongation, and
rotation in flow. These highly compliant particles should vastly
improve the utility of forward and side scatter (FSC and SSC)
measurements, providing a more accurate assessment of cell size
in these ubiquitous devices. More generally, use of CMMPs as a
stable, off-the-shelf substitute for cells in product testing could
potentially save researchers (and companies) significant time and
money normally devoted to maintaining and handling biohazar-
dous cell cultures. Although CMMPs with stable, physiologically
relevant, mechanical properties have been produced successfully
[16], none to date have been fabricated in ways that incorporate
internalized structures with the purpose of matching light diffrac-
tion caused by the cytoplasmic contents of living cells.

Microfluidic devices are another tool being developed to char-
acterize and/or sort cells for high-throughput assessment of cell
populations or the detection of rare cell types [64–66]. Such
devices have potential applications in cancer/rare cell diagnostics,
general research purposes, and cell-based medicine. The mecha-
nophenotype of cells has been recognized as a powerful bio-
marker that correlates with the metastatic potential of cancer
cells [67] and the lineage-specific differentiation potential of stem
cells [68]. As such, microfluidic devices that can characterize and
sort cell populations by their mechanical properties can be used
for cancer diagnostics or to isolate subpopulations of stem cells
with the greatest potential for the desired tissue type, potentially
resulting in major improvements to current tissue engineering
techniques that use more heterogeneous cell populations. Simi-
larly to flow cytometry or FACS, calibration particles that more
closely resemble the characteristics of cells would provide obvious
advantages over nondeformable particles for modeling cellular
behavior in these types of flow fields. CMMPs could substitute for
cells during pilot work, optimization of flow rates, and
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determination of device accuracy and precision. Particles used for
this purpose should be very stable and thus should not use biode-
gradable materials to minimize potential changes in mechanical
properties and size.

Previous research by Labriola et al. has demonstrated that
hyper-compliant CMMPs (< 1 kPa) deform substantially within
microtissue constructs in response to the contractile forces of sur-
rounding cells (Fig. 2A) [16]. Since the material properties of
CMMPs can be tightly controlled, it is feasible for them to be used
as a tool for measuring intratissue forces that cells exert within 3D
constructs. Such a tool can allow for researchers to probe changes
in contractile forces generated by cells within microtissues result-
ing from changes in the lineage commitment of stem cells, meta-
static potential of cancer cells, or changes in cadherin/integrin
binding and cytoskeletal structures resulting from drug treat-
ments. Not only would this technique provide force measure-
ments from within complex microtissues, an advantage over
other mechanical characterizing techniques such as atomic force
microscopy, but these measurements could also be obtained from
fluorescent images without the use of more expensive and com-
plicated equipment. Complex morphologies would likely compli-
cate the calculation of these forces, making simple, spherical
particles advantageous for this type of application.

Additionally, CMMPs may be used as a tool for toxicology
screening. CMMPs can be theoretically loaded with a drug of
interest and delivered into microtissue constructs to test various
doses or release profiles. This technique provides advantages over
traditional toxicology experiments that use 2D culture systems or

rely on diffusion of drugs/soluble factors through 3D tissue con-
structs by providing a high throughput platform that can provide
more information on the localized effects of the cargo within the
more physiologically relevant 3D microtissue constructs [3, 69].
Furthermore, the CMMPs can be fabricated to mimic smaller
structures, such as bacterium or other pathogens, to study
phagocytic uptake by cells or macrophages to determine the
effects of drugs when delivered directly to the cytosol.

FABRICATION METHODS

A variety of fabrication methodologies exist for producing micro-
particles, and hence CMMPs, each with their own advantages and
limitations (Table 1). Most of these fabrication techniques use
polymers or fatty acids/amphiphilic materials (e.g., liposomes) to
produce either homogenous spheres or core-shell structured
microcapsules, respectively [70]. Self-assembly and phase separa-
tion are the driving mechanisms for many of these methods,
including: solvent evaporation, emulsion polymerization and in
situ/interfacial polymerization, salting-out, and phase inversion
nanoencapsulation [71–74]. Highly monodisperse particles with
custom-designed morphologies can be produced using Particle
Replication In Non-wetting Templates (PRINT); however, templates
need to be entirely redesigned to produce particles of different
morphology or size, which can be expensive and time consuming
[75, 76]. Another fabrication technique that allows for morpholog-
ical control is layer-by-layer (LBL) deposition. This method involves
depositing layers of a selected material on template seed particles
that possess the desired morphology to produce shells that main-
tain the original, irregular shape [77, 78]. Once shell particles are
obtained they can be porated and infiltrated with hydrogels to
alter the material of the microparticles [79]. Microfluidic/capillary-
based approaches can form highly monodisperse populations of
microparticles but are less high-throughput by the nature of their
setups [80, 81]. Beyond these general methodologies, there are
also preparation techniques and self-assembly driven systems spe-
cific to liposomes that produce microparticles through: mechani-
cal agitation (e.g., sonication, vortexing, micro fluidizers, French
press, etc.), solvent replacement, detergent removal, size transfor-
mation, and fusion [82–86]. Emulsion droplet size is controlled,
most simply, by adjusting the level of mechanical agitation during
production or through filtering once the particles are formed.

MATERIAL CONSIDERATIONS

Multiple types of synthetic and natural materials have been used
to generate CMMPs. A subset of materials fabricated as micropar-
ticles and used with stem cells include: PLGA, agarose, gelatin,
chondroitin sulfate (CS), hyaluronic acid (HA), and polyacrylamide
(PAAm) [8, 11, 16, 17, 87].While all of these materials can be fab-
ricated in ways that replicate cell properties in regard to size, pro-
tein coating, and topography, only a few are suitable for achieving
physiologically relevant mechanical properties (i.e., Young’s mod-
ulus< 10 kPa). Cell mimicking stiffness has been demonstrated
using CS [88], HA [89], gelatin [90], agarose [91], and PAAm [16],
while materials such as PLGA are orders of magnitude stiffer than
cells, even when hybridized with more compliant materials [92].
Characteristics such as biodegradability and biocompatibility can
be incorporated into all of these materials through chemical modi-
fication or copolymerization; however, the simplicity of these

0.25 kPa 10 kPa
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nim 484nim 462 440 min396 min352 min308 min

Figure 2. Cell mimicking microparticles (CMMPs) within self-
assembled, stem cell spheroids can serve as force probes by moni-
toring their shape. (A): These three-dimensional projection images
from the Darling Lab at Brown University illustrate how highly com-
pliant, 0.25 kPa CMMPs (red) deform in response to the contractile
and adhesive forces of surrounding cells (green). Theoretically, an
accurate reporting of the in situ stresses could be calculated based
on the known mechanical properties of the CMMPs and their defor-
mation from an original, spherical shape. (B): These two montages
of confocal images (�60 mm thickness, 7 mm steps) demonstrate
that both 0.25 kPa (left) and 10 kPa (right) microbeads (red) are
shuttled to the center of cell spheroids when coated in collagen.
Cell nuclei (blue) and actin cytoskeletal structures (green) were
stained with 40,6-diamidino-2-phenylindole (DAPI) and Alexa Fluor
488 phalloidin, respectively. Magnification: 340.
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chemistries depends on the molecular composition of the materi-
als. Furthermore, special attention must be given to how the new
material behaves mechanically, if this is a property that is being
mimicked.

CMMP CUSTOMIZATION

Polymer microparticles can be customized using well-established
techniques to more closely mimic additional properties of cells,
including: morphology, surface molecules, protein secretions,
mechanical properties, and more. Particle morphology modifica-
tion has recently become significantly easier to achieve. Previ-
ously, most (if not all) polymeric particles were spherical in shape
since existing production methods typically used self-assembly
and colloidal mechanisms, governed by the laws of thermody-
namics. Now, the morphology of microparticles can be controlled
through techniques that make use of templates, such as PRINT or
LBL, through the careful design of microfluidic devices [80, 93], or
through the physical modification of spherical microparticles pro-
duced by other methodologies [94, 95].

Surface molecules are a critically important cell characteristic
that should be considered for CMMP coatings since they play a
primary role in how the particle interacts with biological systems.
From a delivery/homing standpoint, coatings can be used to
extend circulation time (PEGylation) or allow targeting of specific
cells/organs, for example, by the addition of tissue-specific mem-
brane receptors [59, 96]. In a broader sense, coating with cell
adhesion molecules will allow for a range of CMMP-cell and
CMMP-material interactions that would otherwise not occur with
an inert polymer [16]. Researchers can use this approach to inves-
tigate how specific integrins, cadherins, or other binding mole-
cules influence the organization and movement of CMMPs within
a cell-dense structure. This could be an important factor for

controlling the dispersion of CMMPs in tissues since recent
reports show a tendency for collagen-coated PAAm microparticles
to aggregate in the center of stem cell spheroids. (Fig. 2B) [11,
16]. Alternatively, surface coatings can be passive elements whose
function is only triggered by a change in the environment, for
example, releasing active enzymes as the sacrificial outer layers
degrade [97].

Another key characteristic of cells is their mechanical proper-
ties.While the vast majority of microparticles are made from rigid
materials that are 5–6 orders of magnitude stiffer than a living
cell, recent advances have demonstrated that hydrogel materials
can be used to fabricate CMMPs exhibiting physiologically rele-
vant sizes and elasticities (5–40 mm, 0.1–5 kPa, respectively), [16].
Substrate material stiffness, in both 2D and 3D culture systems,
dramatically influences stem cell morphology, mechanical proper-
ties, and differentiation response [36]. Although adjusting the
crosslinking density of a polymer is the most prevalent means of
tuning microparticle mechanical properties [98, 99], other possi-
bilities exist and are associated with specific fabrication methods.
For example, microparticle stiffness can be adjusted for LBL by
controlling how many layers are deposited [100], and techniques
that generate core/shell structures can choose shell materials
with defined elastic moduli [101, 102]. In general, most of these
approaches are limited to use with high-modulus materials out-
side of the physiologically relevant range. The majority of pub-
lished studies that modulate microparticle crosslinking do so to
control the release rate of encapsulated drugs, rather than mim-
icking cellular properties [103]. In this nascent direction, hydrogel
microparticles offer the best range of mechanical properties to
achieve accurate mimics.While not compatible with all fabrication
techniques, these materials provide unique advantages in the
area of biomechanics compared with other, primarily solid materi-
als. Apart from directing cell behavior or altering molecular
release kinetics, the mechanical properties of microparticles have

Table 1. Advantages and disadvantages of common microparticle fabrication methods

Technique Pros Cons

Solvent evaporation Scalable
Easy to use
Hydrophobic encapsulation

Uses organic solvents
High polydispersity
Only spherical particles
No hydrophilic encapsulation

Emulsion polymerization and in situ/
interfacial polymerization

Scalable
Easy to use
Good compatibility with high
compliance materials

Uses organic solvents
Medium polydispersity
Only spherical particles

Salting out Hydrophobic/hydrophilic encapsulation Can disturb sensitive biologics
High polydispersity
Only spherical particles
Limited versatility

Phase inversion nanoencapsulation Scalable
Easy to use
Hydrophilic encapsulation

Uses organic solvents
Medium polydispersity
Only spherical particles
Requires large volumes

Particle replication in non-wetting
templates (PRINT)

High monodispersity
Morphological control
High loading/encapsulation efficiencies

Low yields
Difficult to scale process
Relatively complex

Layer-by-layer (LBL) Morphological control
High loading/encapsulation efficiencies
Hydrophilic/hydrophobic encapsulation

Low yields
Difficult to scale process
Relatively complex

Micro/capillary fluidics Easy to use
High monodispersity
High loading/encapsulation efficiencies

Low yields
Only spherical particles
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also been shown to influence their uptake by cells and tissues
as well as circulation and clearance time in an organism [104].
Stiffer particles exhibit increased uptake compared with their
softer counterparts while the more compliant particles remain in
circulation longer.

Through combining the various fabrication methods and cus-
tomization techniques, ever more accurate CMMPs can be cre-
ated. Ideally, these particles should be completely biocompatible
while also mimicking the morphology and mechanical properties
of the cells they are replicating. When needed, CMMPs should be
designed to mimic the cellular release of proteins, steroids,
growth factors, and other compounds to elicit desired biological
responses. Interactions with neighboring cells can be encouraged
by incorporating physiologically representative surface coatings
and, depending on the specific application, CMMP degradation
may be an important design factor to consider. For temporary use
in the body, CMMPs should be biodegradable, lessening the
chance of a negative, long-term response to any shed materials.
Alternatively, use of CMMPs as calibration particles or cell substi-
tutes for testing equipment would favor nondegrading materials
that extend shelf-life and ease-of-handling.

Final modifications that can add versatility to CMMPs are fluo-
rescent staining and nanoparticle incorporation. By adding a visual
indicator, researchers are better able to track particle movement,
interactions with cells, deformation, or assist with detection in var-
ious devices such as flow cytometers. Such dyes can be incorpo-
rated through covalent bonding, hydrogen bonding, intercalation,
and so forth, making them compatible with many different poly-
mer types and fabrication methodologies. Nanoparticle incorpora-
tion can serve a variety of purposes, including degradative release
of drugs, light refraction, and magnetic control. This type of modi-
fication is not compatible with all fabrication approaches since the
pre-formed nanoparticles are typically doped in during the
formation phase of the microparticles. The ultimate function can
be similar to a coated, solid particle; however, there is often
more versatility in being able to add a variety of function-specific
nanoparticles within a larger CMMP.

CONCLUSION

Although researchers in the nascent CMMP field have successfully
mimicked a subset of cellular properties, they have yet to combine
these characteristics in ways that produce CMMPs that can truly
substitute for cells. By incorporating surface modifications, nano-
scale topographies, bulk mechanical properties, and size restric-
tion, CMMPs can be optimized for use in regenerative medicine
or as replicas that can calibrate devices, deliver drugs, and mea-
sure forces. In vitro applications provide ample opportunity for
the immediate use and study of CMMPs. Likewise, these novel
particles can be used for early testing and troubleshooting of
devices that normally would require biohazardous, live cells.
CMMPs can also offer a new tool for basic research involving toxi-
cology screening, drug/growth factor delivery, and force

measurements within 3D microtissues. These applications would
likely be early to mid-stage applications as they still involve in vitro
experiments but seek to answer more complex mechanistic
research questions. Late-stage uses of CMMPs would include
more in vivo and clinical applications such as the delivery of drugs,
growth factors, or topographical and mechanical signals to tissues
within the body, or implanting microtissue constructs of stem cells
whose fate has been optimally directed with the use of such par-
ticles. These types of applications will likely be implemented last
as they will require the most accurate cell mimics to reduce
immune responses, improve tissue integration, provide responsive
biological feedback, and truly offer control over cell differentia-
tion, which will require the combination of multiple customization
techniques as well as extensive testing to elucidate side effects
and obtain proper governmental approvals. CMMPs may be a use-
ful tool for multiple facets of both research and clinical settings,
but each specific application will require extensive customization
to optimize CMMP performance in these unique systems. Future
research should strive to replicate aspects of the cell that have yet
to be synthetically recapitulated. Once these cell properties have
been individually mimicked by CMMPs, combining the aforemen-
tioned fabrication and modification techniques should yield highly
accurate, synthetic cell mimics that can be used in place of live
cells for regenerative therapies or serve as a versatile research
and diagnostic tool.
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